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Abstract

Bioequivalence is an important area of pharmaceutical research
containing many questions which are not yet resolved. Various statisti-
cal approaches have been discussed in the literatures. We address stop-
ping rules for testing bioequivalence from a decision-theoretic point of
view. The numerical techniques for Bayes sequential decision problem
are employed to obtain explicit descriptions of the solutions of the
continuous time optimal stopping problem on bioequivalence.
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1 Introduction

Two or more formulations of a drug are often compared in a bioequivalence
trial. The purpose of such a trial is to determine whether alternative formu-
lations which contain equal amounts of the same active ingredient give rise
to comparable blood levels or produce, in some sense, equivalent therapeutic
effects.

Usually several characteristics of the blood level concentration-time curves
are considered. If a single dose of the drug is admistered, then the area un-
der the curve (AUC), maximum concentration (CMAX) and the time at
which the maximum concentration occurs (TMAX) all give useful informa-
tion about the the extent and rate of absorption of the active ingredient of
the formulations. The distributions of these values are usually not far from
normal. For more discussion of the interpretation of relevant characteristics
and design considerations associated with bioequivalence trials see Metzler
(1974). A lot of authors have pointed out that a test of the usual null hy-
pothesis is inappropriate since small and clinically insignificant differences
may be detected with a large sample . Furthermore, as is always carefully
underlined in introductory statistics courses, failure to reject the null hy-
pothesis does not imply its affirmation. Considerable controversy has arisen
over the appropriateness of different approaches. For such discussions, the
reader is directed to the articles by O'Quigley and Baudoin (1988) for general
approaches and Selwyn et al. (1981) for the use of the Bayesian approach.

We address stopping rules for testing bioequivalence from a Bayes se-
quential decision-theoretic point of view. Bather and Chernoff (1988) have
derived a formulation where sums of successive observations of differences are
replaced by a continuous time Wiener process. Using several fundamental
advantages of the continuous time problem over the discrete time problem for
which it is an approximation, they also obtained rough bounds and asymp-
totic approximations for the solution of the continuous time problem. While
these bounds and asymptotic approximations provide valuable insight, they
do not provide an adequate approximation to the solution.

In this paper we will employ simple numerical techniques which are de-
scribed in detail by Chernoff and Petkau (1986) to obtain explicit descriptions
of the solutions of this continuous time problem. The basic idea is straight-
forward: the Wiener process is approximated by a discrete time process and
backward induction is employed to solve the optimal stopping problem for
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this new process. Then this solution, properly adjusted, can be used to ap-
proximate that of the continuous time problem. This approximation can
then itself be adjusted further to approximate the solution of the original
discrete time bioequivalence problem.

2 Statement of the Problem
We consider a trial with a parallel design for comparing two formulations, a
new formulation and the standard. The design allows a drug experimenter
to terminate the program early if the two formulations are almost equivalent
or far from equivalent and to continue the trial otherwise. Before looking at
the sequential approach we recall the main ideas. Let p, measured on some
scale, represent the true difference between the two population treatment
means. In the process we will estimate p. As pointed out we will be unable
to infer p = 0, and even were we able to infer M 0 0 this may be of little
practical assistance if p seems to be close to zero.

The Bayesian approach allows, in fact requires, explicit consideration of
the information available concerning the drug separate from the current trial.
For example, the drug manager may be quite sure, on the basis of previous
studies, that the difference of the two formulations is very small. On the other
hand, despite these other studies, the bioequivalence of these drugs may still
be in doubt, in part perhaps because previous experience has focused on a
rather narrow patient population. This information should be used explicitly
in deciding the course of the drug's clinical program.

Consistent with the Bayesian approach, the prior information is quantified
in terms of a (prior) probability distribution on p. To be specific we assume

u - N(po, ).

If go and ao are close to zero then the manager's prior assessment is that
the two formulations are likely to be bioequivalent; and large ao corresponds
to a high degree of uncertainty regarding M. The roles of go and a0 will be
made clear in the following development.

Let Xi denote the difference responses for i-th pair of patients, i =
1,... , n. Assume the sequential random sample X 1,..., X,, are independent
N(p, 0 2 ), where a 2 is known (the unknown variance case is more realistic but
is not conceptually different).
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The posterior distribution of p given X1,..., X, is

C(AI X1, . ,) = N(Y,,s.),

where
y_ =oao2 + (XI +... + X) -2  ()
Y, "02 + no--2

and the precision
S-

1 = 00
2 + na-2

increases linearly in n.
So after each observation, we need to know n, the current Bayes estimate

Y of p, and its precision sn ; (Y, s,) is the "state of information" after the
n-th observation. Then we may decide to continue sampling or to stop. In
the latter case we must decide on whether or not we have bioequivalence.
While it will be only approximately true in practice, we assume that the cost
of the trial is linear in the number of pairs of patients in the experiment.
That is we assume that the marginal sampling cost per pair is c. When the
trial is stopped, one must decide to reject or claim bioequivalence. The cost
of rejecting bioequivalence is k, the expected cost of having to start over. In
the following discussion we first consider the case where the cost of claiming
bioequivalence is p2 .

Now let us compute the posterior risk of stopping at stage n. We have
the risk associated with stopping and deciding for or against bioequivalence
plus the cost of sampling cn yielding d(Y, s,,), where

d(y,s) = cn + min{k, E[ 2IY, = y,s. - s]}
= cn + min{k, y2 + s}

ca 2  ce 2

- - min{k, y 2 + s} - -(2)

The problem of finding the Bayes procedure for the bioequivalcnce prob-
lem has been reduced to a standard stopping problem of the type described
in Chernoff (1972).
Stopping Problem : Let (Y, s,,, n E G) be a Gaussian process of inde-
pendent increments starting from (Y,,,, s,0), no E G, with

C(Y. - Y,.IYm) = N(O,,Sm - sn), n >_ m, (3)
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and let the cost associated with stopping at (Y, s,,) be given by d(Y, s,,).
Find a stopping rule (a random variable N taking on values in G such that
{N = n} E B{Y: i e G, no < i < n}) so as to minimize

E[d(YN, SN)]. (4)

3 Continuous time stopping problem

The continuous time stopping problem has a number of fundamental advan-
tages over the discrete time problem for which it is an approximation. First,
the continuous time problem can be normalized so that many of the parame-
ters which appear in the original (discrete time ) problem are eliminated; thus
a single continuous time problem corresponds to an entire class of discrete
time problem. Second, the continuous time problem for a Wiener process
where the cost associated with stopping depends only on the stopping point
is related to a problem in analysis, a free boundary problem involving the
heat equation. This relationship facilitates obtaining bounds and asymptotic
approximations for the solution of the continuous time problem.

For the bioequivalence problem, y is regarded as a random variable, and
the limiting form of the (Y, s,) process is a Gaussian process of independent
increments Y(s) in the -s scale for so > s > s o , where

E[dY(s)] = 0, Var[dY(s)] = -ds,

with Y(so) = go at so = or02 and

s- 1 = ao 2 + t o - 2 .

Note that as time t increases from 0 to oo, s decreases from ao2 to 0. Thus
(-ds) may be thought of as positive. Hence a limiting form of the bioequiv-
alence problem is a special case, for G = (0, oo), of the following continuous
time stopping problem.

Stopping problem : Given a Gaussian process {Y(s), s E G} of inde-
pendent increments in the -s scale, with EdY(s) = 0, Var[dY(s)] = -ds,
starting at Y(so) = yo, find a stopping time S (S is a random variable on G,
where { S = s } E 3 {Y(s'): so > s' > s}) to minimize the risk

E[d(Y(S), S)].
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The continuous time version of the bioequivalence problem is essentially
associated with the cost function

d(y,s) = CO+ min{k, y2 + s},
s

after dropping the constant co2/au which does not affect the choice of the
optimal procedure.

Not only is the continuous time problem a limiting form of the discrete
time problem, but we may regard the latter as embedded in the continuous
time problem subject to the restriction that stopping may take place only at
certain specified values of s, i.e., s = (o, 2 + t,- 2) - 1 for integer values of t.
In this continuous time framework, Y is regarded as a function of s and the
subscript n has been eliminated as an unnecessary parameter which serves
only to mark the possible stopping times.

From the point of view of solving the bioequivalence problem, certain
simplifying transformations can be made. The transformation

Y*(s*)= aY(s)

" a 2S

converts the Y(s) to the Y*(s*) process which is also a Gaussian process of
independent increments with E[dY*(s*)] = 0, and

Var[dY*(s*)] = a2Var[dY(s)] = -a 2 ds = -ds*.

Then taking a = k -1/ 2, we have

d*(y*a*) = k- (d(y,s) - k)

= k-1cO2as' + min{, k-la-2(y* 2 + s*)- 1}

- k 2 cu~s -1 + min{0,y 2 + s" - 1}

- _+min{0,y 2 +s-1} (5)
8"

Thus our problem may be normalized by this transformation to that of deal-
ing with stopping cost d* with one sampling cost parameter c* = ca 2k - .
Now drop the stars, we have a standard form of optimal stopping problem
with

d(y,s)=c+ min{O,y2 +s-1}. (6)

This form involves only the single parameter c.

6



4 Numerical techniques

Chernoff and Petkau (1986) have described a number of techniques to be
employed in obtaining numerical descriptions of the solutions of the gen-
eral optimal stopping problem for a zero drift Wiener process in the (y, s)
scale. Using the same approach, we can create a slightly modified program to
solve the bioequivalence program. In this section, we will review the general
numerical techniques of Bayes sequential decision problems.

The solution of a continuous time optimal stopping problem can be ex-
pressed in terms of a stopping set S and a continuation set C = Sc in the
(y, s) plane; that is, S consists of stopping when (Y(s), s) reaches S as s
decreases from so. This is related to that of a corresponding free boundary
problem involving the heat equation. More precisely, that free boundary
problem is to find (S,b) so that

1 by (y,s) = b,(y,s) for (y,S) E C,

b(y,s) = d(y,s) for (y,s) E S,
b1 (y,s) = d,(y,s) for (y,s) E OS, (7)

where 8S is the boundary of S. The solution b of the free boundary problem
corresponds to the optimal risk d of the stopping problem, that is,

b(yo, so) = d(yo, so) = E[d(Y(S), S)]. (8)

As mentioned before, the discrete time version of the problem can be
regarded as a special case of the continuous time version where stopping
is restricted to a limited subset of the (y, s) space, and hence the optimal
risks and related stopping sets are larger. In the discrete time problem, the
intervals between successive values of s are not equal. For convenience in
the numerical approximation to the solution of the continuous time prob-
lem, we introduce another discrete time problem where the successive val-
ues of s are equally spaced. Moreover, the discrete time solution converges
monotonically to the continuous time solution if the set of possible stop-
ping times {s o + i l, i = 0, 1,.. .} increases and 8 --- 0. While the value of
s in the stopping times set decreases by b between these succesive possible
stopping times, the process Y(s) changes by a normal deviate with mean
0 and variance b; in effect, the Wiener process is being approximated by a
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sum of independent normal random variables. At any point (y, s) where s
corresponds to a permissible stopping time, the choice between either stop-
ping at this point or continuing on to next permissible stopping time and
proceeding optimally thereafter is made on the basis of which of d(y, s) or
E[d(Y(s - 6),s - 6)[Y(s) = y] is smaller. Thus, the backward induction
algorithm which yields the optimal solution to the stopping problem for this
discrete process is specified by

d(y,s) = d(y,s) fors=s o,

= min{d(y,s),E[(y + Zv"6,s - 6)]} for s > so, (9)

where Z represents a standard normal deviate.
Note that the evaluation of the expectation appearing in (9) would re-

quire a numerical integration for which purpose the y-axis would have to be
discretized also. Thus, in practice, the backward induction is carried out on
a grid of (y, s) points, each of which is classified as either a stopping or a
continuation point during the course of the computation. How would one use
the results of the backward induction algorithm (9) to obtain approximations
to the boundary g(s) of the continuation region for the continuous time prob-
lem ? Chernoff (1965) presents a detailed investigation of the relation of the
discrete time normal problem to the continuous time problem. His method
consists of simply adjusting the boundary of the optimal continuation region
for discrete time problem; that is the form

= -(s) ± 0.5826vr, (10)

where y6 and P represent the optimal boundaries for the discrete and contin-
uous time versions and the sign is determined so as to make the continuation
region for the continuous time version larger. This correction may be used
to go from the backward induction to the continuous time version, and then
again to go from the latter to the original discrete time problem.

To avoid the time consuming numerical integration, the standard normal
deviate in (9) is replaced by a random variable which is ± 1, each with
probability 1/2, leading to the algorithm

d(y,s) = d(y,s) for s = so, (11)
=minf d(y, s), 1[ (y + , s - b) + (y - N/T, s- 6)]})for s > so.

2
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We relate this algorithm to a discrete time binomial problem which is
different from (9) which corresponds to a discrete time normal problem. For
the discrete binomial approximation (11), the discretization of the y-axis is
necessarily related to the discretization of the s-axis. Whereas the Wiener
process was previously being approximated by the sum of its increments,
in this simpler approximation the increment of the Wiener process is itself
replaced by a Bernoulli random variable. While the second moment of the
Bernoulli variable is chosen to match that of the increment it is replacing,
the higher even moments do not match. Chernoff and Petkau (1986) have
described another continuity correction for the solution of the discrete time
version with Bernoulli increments. Defining

D(y, s) = d(y, s) - d(y, s),

where d is the optimal risk in the discrete time problem ( the function evalu-
ated by the algorithm(11)) for y(s) E C and close to the g(s), the correction
is to use the values Do and D, of D at y0(s) and yl(s), the continuation
points on the grid which are closest and second closest to the stopping region
at the stopping time s, and the continuity correction becomes

9(s) = Y +(s) ± vVr8, (12)

where

= 4D0 - 2D" (13)

The sign is plus (minus) when C is above (below) S . Thus, by applying
two corrections we can approximate the solution to the original discrete time
normal version of our optimal stopping problem. That is, we calculate the
backward induction solution with the discrete time Bernoulli process, use
(12) to approximate the solution to the continuous time problem and end by
applying (10) to estimate the solution to the original discrete time normal
version.

5 Implementation

For the bioequivalence problem, the symmetry of d(y, s) about y = 0 implies
that the computations involved in the backward induction can be confined

9



to y _> 0, that is, computing on the grid

{(y,s):s=s1+i6, y=jv';i=0, 1,. .,moj=, 1,...,my}. (14)

The computation proceeds in steps: At the initial step, the values of d are
assigned at all points of the grid corresponding to the initial value sl, say
$I = SO = 0. We remark here that in contrast to the continuous time
problem, the discrete time stopping problem under consideration, (which we
shall call the random walk problem), has the property that the continuation
region is truncated; that is, there exists an interval in the s-axis, [0, r6] , on
which none of the grid points will be classified as continuation points. In
fact for s = 6, d(y, 6) = d(y, b) because d(y, 0) = oo. Knowing d(y, i6) we
can calculate d(y, (i + 1)b), and it turns out that for several steps, there are
no continuation points and d(y, i6) = d(y, i6) for i = 1, 2,...,r; Then for
i > r + 1, continuation points appear.

In the course of this computation which yields the optimal risk for the
random walk problem, each of the individual grid points is classified as ei-
ther a stopping point or a continuation point for the random walk. Thus,
the continuation regions and their boundaries are determined and continuity
correction methods can be employed to obtain approximations to the contin-
uous time boundaries. For accuracy we start with a small step size b. The
use of a small grid spacing in a backward induction designed to obtain esti-
mates for large values of s could require an exorbitant amount of computer
time. On the other hand, while the use of a large grid spacing may allow
the determination of reasonably good estimates at large values of s, the es-
timates obtained for small values of s would be poor. Thus the computation
is carried out in stages or phases where grid spacings are changed from one
phase to the next.

The first phase consists of starting at s1 = 0 and applying m8 steps of
size b for a suitably small value of 6. Then my, the number of grid points
along the y-axis, must be chosen large enough to contain all the continuation
points for this first phase. In the next phase we increase the size of 6 by
a factor of 4 which automatically doubles the grid distance along the y-
axis. Instead of starting phase 2 at the end of phase 1 where s = m86, we

prefer to overlap these two phases, to give the new coarser calculation an
opportunity to adjust, thereby avoiding some possible discontinuities due to
the transition. Thus we have a new 6, four times the original, and a new si
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between the original s' and s1 + mto6, and new values of m, and my. Where
we have overlapping phases, we use the finer grid to determine the values of
the Bayes risk and optimal stopping boundaries to be used for publication.
This procedure can be repeated in successive phases of coarsening the grid.

Referring to Figure 1, we see that there are two boundaries above the y-
axis. For sufficiently large values of the constant c, the outer boundary turns
back toward the s-axis. It is possibly desirable to change 6 again so that the
grid spacings become more refined as the boundary gets close to the s-axis.
It is possible to refine the grids by reducing 6 by a factor 4 when mo . ng
to the next phase. In this case the new s' will be the last value of s, i.e.,
s1 + m,6 = s*. Now we face a technical difficulty. If we label the old and new
values of 6, &o and 6 = &o/4, thcn the new values of y are iVf8 = iV/o/2
and we can not proceed because we have not evaluated d at iV/; = i/6/2
for the odd values of i when s = s*.

To overcome this difficulty we evaluate d(y, s*) for y = ivF,/2 for odd
values of i, by replacing the last dichotomous step of ±V4F, by a four valued
step with the same mean 0 and variance 6o. In other words if we let y go to

Y ± 10: with probability pi,

and

Y ±V7. with probability P2,2 2

(where y = iv7;/2 for odd i), then the mean change E[dY] = 0 and the
variance E[dY] 2 = 6_ if

1
P + P2 = 2

p+ 9 p 2 = 2,

i.e. pi = 5/16 and p2 = 3/16. Thus for these intermediate values of y, the
Bayes risk at (y, s*) will be the minimum of d(y, s*) and

' -5d(y -- Vo, S*- 6) + d(y+ vo,S -
1-6 21-6 2

(Y - ' ,s- - b") + 3d(y +- -,s"-6o). (15)
T6 2 16 2

Having calculated these values we can now proceed with the numerical calcu-
lations using the reduced value 6 of 6. We expect this technique would reveal
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slight discontinuities in the estimates of both the Bayes risk and the stopping
boundary on moving from one phase to the next. But the experiment shows
that the jumps are so small that we can ignore them.

6 Numerical Solutions

Bather and Chernoff (1988) have characterized the general picture of the
solutions by studying the effect of changing the standardized sampling cost
parameter c. First, the optimal continuation region C will cover the curve
y = ±VT-1 for 0 < s < 1. This is because the discontinuity in first
derivatives of the stopping cost min{0, y2 + s - 1} implies a local advantage
in sampling. The advantage is of order JV/I, whereas the sampling cost is
of order Ibsi. Secondly C is monotone in the sampling cost c, that is, c1 > c2
implies C1 C C2 . Third, every point on the parabala y2 + s - 1 = 0 belongs
to C, with the possible exception of (y, s) = (0,1). In fact, there is a definite

advantage in sampling if c < V - 0.484, i.e., (0,1) E C if c < Vi/7re.
Fourth, for c > 1, all points (0, s) lie in the optimal stopping set S and for
0 < c < 1, all points (0, s) with 0 < s < /c also lie in S. Furthermore,

1 c
(y,s) E S ifc>-ands>

From the above results, they have drawn the stopping boundaries roughly

for c > 1, 1 < c < , and sufficiently small c.
We have learned how the solutions would be related to c, but there is

no closed-form solution so far. While the above results do provide valu-
able insight, they do not provide an adequate approximation to the solution.
Applying the previously discussed numerical techniques, we explored the
sequential trials for a large set of sampling cost parameter values. The nu-
merical descriptions of the solutions are summarized in Figure 1 presenting
the plots for the continuous time version for c = 1.0, 0.5, 0.25, and 0.1.

Given any fixed a, o2, k, and c , we can calculate the optimal bound-
aries for the original discrete problem. First we implement the computer
program with the standardized sampling cost c* = co 2k 2 , then apply (10)
to adjust the optimal boundaries of the continuous time version problem.
As an example, suppose a2 = 5, t2 = 20, k = 1, and c = 0.001, then
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c* equals 0.02, and the initial value s*0 in the normalized scale is given by
st, = k-'so = k-lo = 5. The dotted curve in Figure 2 is the optimal bound-
ary of the continuous time problem in the normalized scale with sampling
cost 0.02. Two hundred optimal boundary values of the original discrete
problem are plotted and linked together with solid line segments within the
continuation region of the continuous time problem. Some of the optimal
outer and inner boundaries values, with notations y"t and yi,n Yn, are listed in

Table 1. The optimal sequential rule for this example is to stop the trial at
stage n if IYI _ yo_ t or IYnI 5 y< and reject or claim bioequivalence, and
continue the trial otherwise.

One alternative model is to consider that the cost of claiming bioequiva-
lence is not p2 , but JILI. This leads to a different stopping cost.

E[Ipl I Y(s) - y] = '[Gl(a) --,(-a)], (16)

where
a =y s- G, (a)= o(&)±+a4o(a),

and V and 4D are the density and cumulative distribution functions for the
standard normal distribution.

Note that

GI(a) + Gi(-a) = 2 { (a) + a[4,(a) --11 = Il(a).
2

We have
d2(y,s) = c + min (0 , s',H (a)-1 ), (17)

S

and we will call the sequential optimization problem related to d2 problem 2,
and the previous one problem 1. It is believed that the continuity regions of
this problem should have shapes similar to those of problem 1. In particular
when s is small both d(y, s) and d2(y, s) are approximated by the same term
c/s, representing the sampling cost, and so we expect similar behavior near
s=0.

The implementation of this second version is the same as of the previous
one except for replacing the cost function d(y, s) with d2(y, s). Figure 3 shows
the shapes of the stopping boundaries are very similar for the two versions
for four values of c.
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7 Discussion

From the cost functions d(y, s) and d2(y, s) defined in (6) and (17), we see
the risk approaches infinity as s --+ 0. In order to obtain better solutions for
s near 0 , Bather and Chernoff (1988) suggest the following modification of
d(y, s) using asymptotic expansion technology. Let

J(a) = e- '1 e4 2 dx. (18)

Note that J'(a) = 1 - a J(a) and both s- J(a) and s-J'(a) are solutions
of the heat equation if a = y s- '. Hence, so is

cs-{J'(a_) + J'(a+)},

where y- 1  y1+l
a_ = --- and a+=

Briefly, the modification consists of substracting a solution of the heat
equation from d which does not change the optimal solution, but makes the
derivation of asymptotic expansions for the solution easier by reducing the
singularity due to the term c/s. By subtracting this solution from d(y, s) in
(6) and using J'(a) = 1 - aJ(a), the new cost function di is obtained:

d1(y, s) = min{O, y2 + S - 1} + c{-caJ(a_) + a+J(a+)-l1. (19)

Note the solutions of this new cost function are the same as those of
d(y, s). Thus we may apply the numerical techique to d, (y, s) to compute the
optimal boundaries near (y, s) = (1,0). But it is very expensive to calculate
the integral J(a) directly and to apply the numerical approximation using di.
On the other hand asymptotic approximations to J(a) for small and large
value of a can be used to provide asymptotic expansions for the boundary
curves near the critical point (y, s) = (±1,0). For small s; the boundary
behaves like

Y~l =8 + als 2

2 8
1 + a 2  ,  (20)
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where 17, applies to accepting bioequivalence, 72 to rejection and there are
symmetric curves near y = -1. The values of a, and a2 are a, = - nd

a 2 = g + - respectively. Note that 1 - describes the approximatebehavior of the curve y2 + s = 1 near (y,s)= (1,0).

For problem 2, Chernoff and Bather also suggest that there are almost
symmetrical boundary curves near each critical point (y, s) = (±1, 0), at
y = 1 ± O(s 2 ) and y = -1 ± O(S2).

From the asymptotic result (20), we would expect to see the two bound-
aries close to each other for small values of s for large constant c. In order to
demonstrate the numerical results for small values of s, we chose sufficiently
small c values and computed the numerical approximations for s < 1. Fig-
ures 4 and 5 show clear pictures of the behavior of the boundaries near the
critical points (y, s) = (±1, 0). We see, for problem 2, the estimated stopping
boundaries are symmetric around y = 1. The angles of the curves get larger
and the curves move forward as c becomes smaller. Note that a first set of
numerical computations yielded the dotted curves in Figure 5 which did not
agree well with asymptotic expansions for s close to zero. The continuous
curves were calculated later, using a smaller initial step size and considerably
more computer time. Even these more refined calculations can stand some
improvement for s very close to zero, where asympototic expansions tend to
be quite accurate.

We are also interested in how small c must be for the outer boundary
curve to never return to y = 0. In general, we would like to see how the
inner and outer curves behave as the sampling cost changes.

We have already learned from Bather and Chernoff (1988) that the inner
curve and outer curve will meet at (y, s) = (0, 1) for c > 1 for problem 1. As
c decreases to 0, the inner critical s value, the s value where the inner curve
reaches the s-axis, decreases to 0 and the outer critical s value increases to
oo . Table 2 shows some of the estimated inner and outer critical values for
problem 1. Note that Bather and Chernoff (1988) calculate a bound on the
inner critical s value s > 0.50 for c = 0.0554 and the numerical result is
s = 0.5024.

No bound was calculated for that value of c for which the outer curve
never returns to y = 0. On the other hand, the numerical calculations
indicate that when c = 0.005715, the outer curve is still moving away from
y = 0 when s is 1031. We also can get some insight from Figure 6. Similarly
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for problem 2, the results are shown in Table 3 and Figure 7. When c > 1
the inner critical value and outer critical values meet at s = 1.57.
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Table 1
Estimates of stopping boundary of problem 1

sampling cost c = 0.02

stage outer inner
n out_____yn sn y

0 5.0000000 6.100505
1 4.0000000 5.539054
2 3.3333333 5.085839
3 2.8571429 4.718048
4 2.5000000 4.414596
5 2.2222222 4.167034
6 2.0000000 3.944112
7 1.8181818 3.760117
8 1.6666667 3.596463
9 1.5384615 3.446304
10 1.4285713 3.3169861
20 0.8333333 2.5330751
30 0.5882353 2.1318240
40 0.4545455 1.8871000
50 0.3703704 1.7218550
60 0.3125000 1.6052600 0.3125000 0.1656780
70 0.2702703 1.5146050 0.2702703 0.2799693
80 0.2380952 1.4439480 0.2380952 0.3691222
90 0.2127660 1.3873000 0.2127660 0.4412256
100 0.1923077 1.3404170 0.1923077 0.5001997
110 0.1754386 1.3018960 0.1754386 0.5499748
120 0.1612903 1.2694870 0.1612903 0.5918276
130 0.1492537 1.2416210 0.1492537 0.6281131
140 0.1388889 1.2176189 0.1388889 0.6593656
150 0.1298701 1.1968200 0.1298701 0.6866206
160 0.1219512 1.1788880 0.1219512 0.7101631
170 0.1149425 1.1629310 0.1149425 0.7314749
180 0.1086957 1.1490070 0.1086957 0.7504526
190 0.1030928 1.1365730 0.1030928 0.7674252
195 0.1005025 1.1308140 0.1005025 0.7752527
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Table 2
Estimates of inner and outer critical values

for bioequivalence problem 1

c s - inner s - outer

1.00 1.0000 1.0000
0.75 0.9997 1.0000
0.65 0.9872 1.0011
0.50 0.8973 1.0164
0.35 0.8667 1.0874
0.25 0.7891 1.2515
0.15 0.6778 2.0060
0.10 0.5999 4.7848
0.075 0.5508 20.059
0.065 0.5278 106.17
0.060 0.5169 1063.9
0.058 0.5102 19326.5
0.0575 0.5083 172112.6
0.05725 0.5082 4127510.8
0.0572 0.5062 26454535.0
0.05716 0.5062 8290124500.0
0.05715 0.5062 > 2.11671245 (31)
0.0554 0.5024
0.0500 0.4878
0.0400 0.4561
0.0300 0.4210
0.0200 0.3730
0.0100 0.3050
0.0050 0.2549
0.0010 0.1728
0.0005 0.1487
0.0001 0.1097
0.00005 0.0977
0.00001 0.0767 1
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Table 3
Estimates of inner and outer critical values

for bioequivalence problem 2

c s - inner s - outer
1.00 1.5707 1.5707
0.75 1.5707 1.5708
0.50 1.5467 1.5738
0.35 1.4246 1.6304
0.25 1.2841 1.8043
0.10 0.9249 5.5226
0.06 0.7669 115.62
0.059 0.7637 153.05
0.056 0.7491 512.05
0.054 0.7393 2354.9
0.053 0.7339 10442.4
0.0525 0.7319 41255.5
0.0523 0.7301 100130.5
0.0521 0.7299 413058.6
0.052 0.7276 1401723.5
0.0519 0.7280 18049758.0
0.0518 0.7281 > 2.11671245 (31)
0.050 0.7191
0.010 0.4150
0.005 0.3397
0.001 0.2321
0.0005 0.2047
0.0001 0.1585
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Figure 1 Boundary of bioequivalence problem 1
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Figure 2 Boundary of original discrete problem 1
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Figure 3 Boundary of bloequivalence problem 2
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Figure 4 Stopping boundary of problem 1 -- small c

C=O

)1

C=(5

C-

I I I I I

0.0 0.2 0.4 0.6 0.8

S

23



Figure 5 Stopping boundary of problem 2 -- small c
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Figure 6 Inner and outer critical curve of problem 1
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Figure 7 Inner and outer critical curve of problem 2
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ABSTRACT

Bioequivalence is an important area of pharmaceutical research containing many ques-
tions which are not yet resolved. Various statistical approaches have been discussed in the
literatures. We address stopping rules for testing bioequivalence from a decision-theoretic
point of view. The numerical techniques for Bayes sequential decision problem are em-
ployed to obtain explicit descriptions of the solutions of the continuous time optimal stop-
ping problem on bioequivalence.



UNCLASSIFIED

SECURITY CLASSIFICATION OF *.IS PAGE

REPORT DOCUMENTATION PAGE

I&. REPORT SECURITY CLASSIFICATION b. RESTRICTIVE MARKINGS

Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTiONiAVAILABILITY OF REPORT

Unlimited
2b. DECLASSiFICATION DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

TR No. ONR-C-6

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Dept. of Statistics If applicable)

Harvard University

6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)

Dept. of Statistics SC713

Harvard University

Cambridge, MA 02138

Ba. NAME OF FUNDINGISPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable) N00014-91-J1005

ONR Code 1111

Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

office of Naval Research PROGRAM PROJECT TASK WORK UNIT

Arlington, VA 22217-5000 ELEMENT NO. NO. NO. ACCESSION NO

1. TITLE (Incluae Security 0assification)

Numerical Solutions for Bayes Sequential Decision Approach to Bioequivalence Problem

12. PERSONAL AUTHOR(S)
Jing-Shiang Hwang

i3a. TYPE OF REPORT 13b. TIME COVERED F14. DATE OF REPORT (Year, Month, Day) IS. PACOUNT

Technical Report IFROM TO March 1991

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Bioequivalence; Backward induction; Bayes risk; Decision

theory; Optimal stopping; Sequential analysis; Wiener process

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

See reverse side.

20 DISTRiBUTION ,AVAILABILITY OF ABSTRACT 21 ABSTRACT SECLRITY CLASSIFICATION

(UNCLASSIFIED/UNLIMITED 03 SAME AS RPT 0 DTIC USERS

22a NAME OF RESPONSIBLE NDIVIDUAL 22b TELEPHONE Include Area Code) 2€. OFFICE SYMBOL

Herman Chernoff 617-495-5462

DO FORM 1473.84 MAR 83 APR ea,tion may be used until esxIaustea SECRITY CLASSIFICATION OF THIS PAGE
All otifer eOtOns are otsolelt UNCLASSIFIED


